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On the use of singular yield-conditions and

associated flow rules1

By William Prager 2

Abstract. It is well known that the use of Tresca t s

yield condition frequently leads to a simpler system of equ-

ations- for the stresses in a plastic solid than the use of

the yield condition of Mises. In rost cases where Tresca's

yield condition has been used for this reason, the flow rule

associated with the Mises condition has been retained, how-

&ver. Following Koiter* (1), it is shown that further sim-

plification results from the use of the flow rule associated

with the Tresca condition. The reason for this is discussed

in connection with two examples concerning the finite enlarge-

ment of a circular hole in an infinite sheet of perfectly

plastic or work-hardening material. The second example is

probably the first non-trivial case in which a problem of

finite plastic deformation of a work-hardening material has

been treated in closed form by the use of incremental stress-

strain relations.

I The results presented in this paper were obtained in the
course of research sponsored by the Office of Naval Re-
search (Contract N7onr-35801).

2 Professor of Applied Mechanics, Brown University;
Mem A.S.M.E.

The author is indebted to Professor Koiter for the use

of an advance copy of this paper.
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INTRODUCTION

The mechanical behavior of a perfectly plastic solid

is defined by the yield condition and the flow rule. The yield

condition specifies the states of stress under which plastic

flow will occur. For each of these states of stress the flow

rule specifies the components of the plastic strain rate to

within an arbitrary common factor. This positive factor is re-

quired by the assumption that the solid is inviscid: the state

of stress necessary to cause a certain type of plastic flow does

not depend on the speed of deformation. In the following, a set

of strain rate components that are defined only to within a

common positive factor will be said to specify a "flow mechanism".

For an isotropic perfectly plastic solid, the orien-

tation of the principal axes of stress does not enter into the

yield condition. This condition therefore assumes the form

f(d 1 ,d 2 ,d 3 ) = 0, [I]

where the function f must be symmetric in the principal stresses

d1l d2 9 d3 . If the solid retains its isotropy during plastic

flow, the principal axes of the strain rate must coincide with

those of the stress. The flow rule therefore reduces to a

relation between the principal stresses da, a2 9 d3 and the

principal strain rates el, e2 , e3 .

It is convenient to represent the yield condition [l]

geometrically by considering ol' d25 and d as the rectangular1. 2 3
coordinates of a point on the "yield surfece". The flow rule

may then be talten to specify a direction at each point of the
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yield surface, the three direction cosines being proportional

to el, e2, e 3

Mtses (2) proposed the flow rule that associates with

each point of the yield surface the direction of the exterior

normal of this surface at this point:

ef:e2 :e af af [2]1l 2:e3 = ad To a a

1 2 O3

In Eq. [2] it has been assumed that the sign of the yield func-

tion f has been so chosen that the exterior normal of the yield

surface indicates the direction of increasing values of f.

The idea of using the yield function f as tha "plastic

potential" proved useful for the formulation of flow rules for

crystals and other anisotropic solids. In recent years, the

concept of the plastic potential has gained added importance

because the theory of limit analysis is based on this relation

between the yield condition and the flow rule (see, for instance,

(3), (4))-
The flow rule [2] presupposes that there is a uniquely

determined exterior normal at each point of the yield surface.

Not all yield conditions used in the mathematical theory of

plasticity satisfy this regularity requirement. For example,

the yield surface corresponding to Tresca's condition of con-

stant maximum shearing stress is a regular hexagonal prism. At

a point on an edge of this prism, the exterior normal is not

defined, and there arises the question how the tflow rule [2]

should be modified at such a singular point.

Consider first a point P on the edge formed by two
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adjacent flat or curved faces of a yield surface. Each of these

faces has a unique exterior normal at P, and each of these nor-

reals may be considered as representing a flow mechanism that is

possible under the state of stress represented by P. It is then

natural to assume that other possible flow mechanisms can be

obtained by combining these two fundamental mechanisms in a

linear fashion and with positive coefficients.

In the case of Tresca's yield condition, for instance,

the faces of the prismatic yield surface lie in the planes

0 1 -302 = 5 + 5 2 d3 = +, [3

where d is the yield stress in simple tension. For points on

one of the adjacent faces d 1 02 a and am - a3 = 0 the flow

rule [21 furnishes

el:e2:e3 1: - 1:0 [4]

and
el:e2:e3 1:0: - 1, [5]

respectively. The first flow mechanism represents pure shear

in the dl6 2 plane; the second mechanism, pure shear in the

ltd 03 plane. The point representing the state of simple ten-

sion a, = 6 lies on the co'mon edge of these two faces. Accord-

ing to the flow rule proposed above, the flow mechanisms possible

under this state of simple tension are characteriied by

P. :e 2 :e 3 = 1: - \: - (I a >), [6]

wh-re 0 < X < 1. The three terms on the r*ght-hand side of Eq.

[6] are obtained by multiplying the corresponding terms of Eqs.
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[j] and [5] by X and 1 -X, respectively, and adding.

While the type of singular point just discussed is the

only one occurring in conriection with Tresca's yield condition,

other types, such as a vertex of a polyhedron or a cone, can be

treated in a similar manner.

At first glance it might seem that this modification

of the flow rule [21 at singular points of the yield surface

would greatly complicate the mathematical treatment of problems

of plastic flow. As was pointed out by Koiter (1), however, the

contrary is true: a considerable simplification results from the

joint use of Tresca's yield condition and the associated flow

rule. The reason for this will be explained in connection with

the following examples wihich will also demonstrate that the

simplification is by no means restricted to the case of small

plastic deformations considered by Koiter.

TRESCA'S YIELD CONDITION IN PdOBTJEMS OF PLANE STRES

In problems of plane stress one of the principal

stresses, say o.,, vanishes, and the yield condition can be rep-

resented by a curve or polygon in the 0l, 02 plane. If Tresca's

yield condition is us6l, the yield polygon is formed by the lines

with the equations

01- d2 = + d9 01 = +d 02 = [7

obtained from [31 by setting 03 = 0. Figure 1 shows this hexagon

which is an oblique section of the afore-mentioned hexagonal

prism. The axis of this prism passes through the origin 0

and forms equal angles with the positive axes of 0, d 2, and d3
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(the litter being normal to the plane of Fig. 1).

Consider a generic point P on one side of the yield

hexagon, for instance on AB. The exterior normal of the three

dimensional yield surface at P is not contained in the plane of

the figure. The projection of this normal on the plane of the

figure is normal to AB, however. Thus, the ratio el:e 2 for the

state of stress represented by P may be obtained as the ratio

between the direction cosines of the normal to the yield hexag.z-n

at P. Once the rati-) el:e 2 is known, the condition of incom-

pressibility
el + e2 + e. = 0 [8,

yields the ratios el:e 2 :e 3.

All states of stress occurring in the following ex-

amples will turn out to be represented by points on the side

AB of the yield hexagon. With 0 < k< 1, the modified flow rule

then furnishes the following iaformation.

(a) State of stress represented by point A:

I = - 6 02 = d3 = 0 and el:e2:e3 = -1: X:-(-). [9i

(b) State of stress represented by interior point of

segment AB:

1 ½2 =" 6 03 = 0 and el:e 2 :e 3 =-1:1:0. [10]

(c) State of stress represented by point B:

62 = 6 l 03 = 0 and el:e 2 :e3 - J:l:-(l-X), [li]

If the yield stress c remains constant during pýastic

flow, the solid is called perf'ectly plastic; if the yield stress
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increases during plastic flow, the solid is called work-hardening.

For the most general type of work-hardening solid the form of the

yield condition could also change during plastic flow1 for in-

stance the hexagon of Fig. 1 could gradually change into an

ellipse. This would correspond to a gradual transition from the

yield condition of Tresca to that of Aises. This case will not

be considered in this paper, however, It will be assumed that

during plastic flow the yield hexagon remains centered at the

origin and merely increases in siie. In the rollowing the yield

stress of the virgin material will be denoted by do and it will
S

be assumed that the rate of hardening d is proportional to the

rate D at which mechanical energy is dissipated during plastic

flow:
a = aD , [12]

where a is a constant.

For the three cases considered above D = dOle + d2 e2 2

d3e3 has the Tollowing values:

(a) D = - oel, £13]

(b) D = (d1 - o2)el = - ael, [14]

(c) D = ee 2, [15]

FIRST EXAMPLE

.he first ewample consider the finite enlargement

of a circular hole in a sheet of a perfectly plastic material.

This problem has been treated by Taylor (5) who used Tresca's

yield condition but the flow rule associated with Mises' yield
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condition. The comparison of Taylor's work and the following

analysis reveals the great simplification achieved by the use

of the appropriate flow rule.

A circular hole of the radius a. in an infinite plate

of the uniform thickness ho is to be enlarged to the radius

a = 1.4 a0 application of a gradually increasing uniform pressure

to the edge of the hole. Since finite plastic deformations will

be considered, elastic deformations will be neglected. The

material at a sufficiently large distance from the hole must then

be treated as rigid because it will not reach the yield limit.

Under these circumstances, radial displacement of the material

near the hole is made possible only by a thickening of the sheet.

In the elastic part of the sheet the radial stress

and the hoop stress d9 are ijversely proportional to the square

of the radius r, and og = - or > 0. Thus, the state of stress

at the elastic-plastic interface is represented by the center of

the segment AB in Fig. 1. Just inside this interface the yield

condition and flow rule are therefore given by Eqs. [10] with

the subscripts 1, 2, 3 standing for r, @, z, respectively. Since

ez = 0, there is no thickening of the sheet and radial displace-

ment is therefore impossible. The material just inside the

elastic-plastic interface accordingly remains rigid even though

the stresses or and d. satisfy the yield condition

r - 0@ = - ao0 [16]

The condition of radial equilibrium in this rigid plastic zone is

3d 0 - 0
+ r 0. £171

r r
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From [161, [1?) and the boundary condition d = Q = /2r

at the elastic plastic interface (r = po) it follows that

S+ log[18]

= (50C - log1r9)

in the rigid plastic zone. The hoop stress is therefore decreas-

ing as one progresses from the elastic-plastic interface into the

rigid plastic zone. It follows from the second Eq. [18) that

the hoop stress vanishes for

r = oo / Ve- =0.606po. [191

This radius which will occur frequently in the following work

will be denoted by p. The state of stress at r = p is repre-

sented by the point A in Fig. 1.

Just inside the circle r p, the circumferential

strain rate e9 must vanish on account of the rigidity of the

surrounding material. The radial strain rate er need not vanish,

however. The flow mechanism is therefore represeited by the

normal to the side AF of the yield hexagon,

There are now two possibilities regarding the variation

of stress and flow mechanism inside the circle r = p, If the

point representing the state of stress moves from A towards F,

the flow rule requires that e9 = 0. This means that the radial

velocity v must remain zero inside the circle r = p, because

e@ = v/r, The sheet would therefore remain rigid even inside the

circle r = p, If, on the other hand, the point representing the

state of stress remains at A, the greater degree of freedom in
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the choice of the flow mechanism at this singular point allows a

plastic deformation of the sheet inside the circle r = p

Since the sheet thickness h will not remain constant

inside the circle r = p, the equation of radial equilibrium has

the form a(ho) h(d = j )
-r + = a. [201
Cr r

Since 02 d 0 1 "o Q = 0 when the state of stress is represented

by the point A, this equilibrium condition may be written as

follows:
*r(rh) = 0. 21

While it is convenient to use the terms "velocity",

"strain rate", and "rate of dissipation of mechanical energy",

it must be remembered that the plastic solids considered here

are inviscid. Consequently, the flow procoss is independent of

the time scale, and any variable that increases monotonically

during the flow process may be used as a measure of "time". In

the following, the radius p will be used in this manner.

If the radial velocity is denoted by v, the radial and

circumferential strain rates are er = Cv/Br, and eo = v/r. The

strain rate in the direction normal to the sheet is (1/h)Dh/dp ,

where Dh/Dp = ah/8p + v~h/Br denotes the "material" derivative

of h. The condition of incompressibility requires that the sum

of the three strain rates vanish:
_v2 +Y2 + + -V = o. [22]

h 8p h Or r r

Equa Equations [21], [22], and the boundary conditions

h = ho, v = 0 at r = p (231
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define the functions h = h(r,p), v = v(rp). From Eq. [21] and

the first boundary condition [23] it follows that

h = h P [224]

With this expression for h, Eq. [22] reduces to a differential

equation for v., The solution satisfying the second boundary

condition [23] is v 1 :-__ [25]
p

(Since the radius p is used as a measure of "time", the "velocity"

must be dimensionless.) From Ec., [252 the strain rates are ob-

tained as follows

er - __ =- &, eg = y [26]ar p r r p

If the material that at the "time" p is at the radius

r was initially at the radius ro, conservation of mass requires

that 2P

21Ej hr dr = th (p -r). [27]2iJr 0 0 .[7

Substitution of [241 into [2?]yields
2 2

P 2+ r2
r =- [28]

2p

Equation [24] can therefore be written in the form

2
h=2h- . [29]

p r 0

According to [9], the solution just obtained will be

valid only if el:e 2 lies between -1:0 and -1:1. The first of

these bounds is attained at r = p where e. = 0 by the second Eq.

[26]. The other bounid is attained at r = p/ 2 where Eqs, [26]
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furnish er = 1/P, ea = i/p. Equation [28] shows that r = p/2

corresponds to ro = 0. Thus, the solution remains valid even in

the case where a pin hole is enlarged to some finite radius.

Formally the results obtained above agree with those

furnished by the "simplified analysis" which Taylor (5) attri-

butes to Bethe. Taylor rejects this analysis because the ratios

of the principal strain rates vary while the ratios of the prin-

cipal stresses are constant. As has been shown above, Bethe's

results can be obtained from a consistent theory, and only experi-

ment can decide whether the behavior of a given material agrees

better with the formulas of Taylor or Bethe.

SECOND EXA14PLE

The second example differs from the first one only in

so far as the sheet material is now supposed to be work-hardening

in accordance with Eq. [121. Since no hardening takes place

wherm the material remains rigid, the stresses outside the cii e

r =p are the same as in the previous example. To keep track of

the progressive hardening of the material inside the circle

r =p p, it will be necessary to use the Lagrangian coordinate ro

as one of the independent variables, the other independent varia-

ble being p as before.

Again oa = 0 inside the circle r = p. Since or = -

is no longer constant, however, the condition of equilibrium [21]

must now be replaced by

a (rh) 1 (rh) = 0.
S0[30
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The solution of this equation that satisfies the boundary con-

ditions h = ho, a = C0 for r = p is

rho = Phood. [31)

In accordance with Eqs, [121 and [13], the rate of

strain hardening is

d = aD = - ader, [32)
ap

where 
Ir =.•X= 

by
Or rOr/8r0  or0

2

I ar0 _' r _8 lop Ogr_ [331

With the use of this expression for el, Eq. [32) can be written

as follows:
aC I(a1/ 0. [34]

The circumferential strain rate is

eo = r l rp= op og r , [35]

and the strain rate in the direction normal to the plane of the

sheet is -1 = h - a log h. O36h
ez h ap ap

The condition of incompressibility can therefore be written in

the form

=0.8r [3?]

Those solutions of the differential equations [34] and

[37] that are compatible with Eq. [31] and satisfy the boundary

condition a = ao for r = p are
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a = do(±L)a/(l+a) [381

and r (2+a)!(l+a)

r = ...- [E + (1 + a)(- 2 ) ( [39]

As before, the solution represented by Eqs. [31],

[38], and [39], is valid only as long as the ratio er:e. remains

below -1. Yrom Eqs. [33] and [351 it is found that this is the

case as long as r > p/ 2 . According to Eq. [39] this means that

the following inecualities must be fulfilled if this solution

is to be valid: i+_

a 2+ [40]
ao+a.[4+]P 1+a

a. 2 + a

To indicate the manner in which Bethe's solution for

a perfectly plastic sheet is modified by work-hardening, assume

that a = 0. 5. For simple tension, this corresponds to one half

of a percent increase in yield stress for a strain of one per

cent. Figure 2 shows the thickness distribution plotted versus

r/p and r/ro. The solid curve corresponds to a = 0.5' and the

dotted curve to a = 0. It is seen that even such a small amount

of strain hardening has a significant influence on the thickness

distribution. According to Ec. [41] the solution represented

by the solid curve in Fig. 2 is valid for a/a < 1.48.
0

CONCLUSION

It has been shown that the joint use of Tresca's yield

condition and the associated flow rule can lead to a considerable

simolification of the mathematical work in problems of plane

plastic stress. The reason for this is the following:
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corresponding to the sides and the vertices of the yield polygon,

one has either a unique flow mechanism and a one parameter family

of principal stress values, or unique values of the principal

stresses and a one parameter family of flow mechanisms. In

either case considerable simplifications result, and the complete

solution is built up of zones in which one or the other type of

simplification pertains.
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